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Cumberland bifaces are frequently referenced in discussions of fluted point technology, Paleoindian chronolo-
gies, and Younger Dryas adaptations. However, due largely to the absence of stratified, datable components, lim-
ited information exists about Cumberland lithic technology. Only brief descriptions of morphology, reduction
sequence, and potential chronologies based on exceptionally small datasets are available in the existing litera-
ture. To address these deficiencies, a study of biface morphology and technological organization was conducted
based on over 900 fluted Cumberland bifaces. Morphological and technological similarities to other fluted biface
types, as well as bracketing radiocarbon ages, suggest that Cumberland bifaces likely date to the early Younger
Dryas. Cumberland appears to represent a maintainable technology used by people adapted to an environment
with predictable resources. Reconstructing artifact life histories suggests Cumberland technology was related
to a logistically mobile settlement strategy.
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1. Introduction

Since originally defined by ThomasM. N. Lewis in 1954, Cumberland
fluted bifaces have received long-term and widespread interest. They
are frequently referenced in discussions of Paleoindian chronologies
(Anderson and Sassaman, 2012; Anderson et al., 2010, 2015; Broster
et al., 2013; Driskell et al., 2012; O'Brien et al., 2001, 2014) and potential
Younger Dryas (YD)-related human adaptations (Anderson et al., 2011;
Meeks and Anderson, 2012). However, questions still remain regarding
the production, use, and timing of Cumberland bifaces in relation to
other Paleoindian technologies. While there is an extensive body of lit-
erature devoted to understanding other fluted biface technologies
(e.g., Amick, 1999; Bradley et al., 2010; Gingerich, 2013; Waters et al.,
2011), research related to Cumberland has been extremely limited.
Nearly all previous studies of Cumberland technology were conducted
on datasets of fewer than 20 specimens (Boldurian and McKeel, 2011;
Cambron and Hulse, 1961; Jolly, 1972; Morse et al., 1964). Thus, until
there is a thorough understanding of what Cumberland is, discussions
related to its chronological association with other biface types, techno-
logical organization, and relevance to YD-related adaptations, will re-
main speculative.

Cumberland represent the instrument-assisted fluted horizon in the
North American Midsouth, and though currently undated, are assumed
to be generally contemporaneous with the earliest part of the YD
(Anderson, 2004; Anderson and Sassaman, 1996; Anderson et al.,
2010, 2015; Bradley et al., 2008; Broster et al., 2013; Ellis and Deller,
1997; Fiedel, 1999; Goodyear, 1999; Meeks and Anderson, 2012;
Meltzer, 2009; Tankersley, 1990, 1996). While these bifaces are preva-
lent throughout theMidsouth, they have only been recovered from sur-
face or disturbed contexts (Anderson et al., 2010, 2011; Goodyear,
1999). Jolly's (1972) study comparing Cumberland and Clovis fluted bi-
face technology in the Middle Tennessee River Valley, though 30 years
old, is still themost detailed discussion of the Cumberland biface reduc-
tion sequence. However, the small sample size (n = 14) provides lim-
ited support for his interpretation of Cumberland technology.
Although Bell (1960) states the Cumberland toolkit consists of various
unifacial tools, there are currently no known discrete Cumberland
assemblages.

The overall objective of this study is to identify, and offer potential
explanations for, variability within Cumberland biface technology. The
research presented here is the first to comprehensively address the
question, “What is Cumberland?” from the perspective of technological
organization, and incorporates previous studies of geographic distribu-
tion and chronology with new morphological and technological data.
One way to link lithic artifacts to behavioral adaptations is to recon-
struct how hunter-gatherers organized their lithic technologies
(Binford, 1979; Kuhn, 1995; Shott, 1986; Torrence, 1983). Investigating
the organization of technology allows us to view technology as a set of
behaviors related to human adaptation rather than a set of objects re-
lated to a production procedure (Nelson, 1991). As such, studying
how bifaces were made, hafted, used, refurbished, and discarded can
offer valuable insight into how Cumberland technology was organized
(Kuhn, 1995; Nelson, 1991). In turn, the life histories, as it were, of Cum-
berland bifaces can be used to support inferences about behavioral
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adaptations in the Midsouth during the late Pleistocene (Binford, 1979;
Nelson, 1991).

2. Geographic distribution

Unlike most other diagnostic point types, there is not a type-site for
Cumberland fluted-bifaces. Rather, the genesis of Cumberland as a type
is derived from the dense concentration of bifaces recovered along the
Cumberland River in middle Tennessee during the early twentieth cen-
tury. Lewis (Lewis, 1954) coined the name Cumberland to describe a
large, thick lanceolate fluted-biface, which he saw as similar to Clovis
and found throughout the Cumberland River Valley. The core geo-
graphic distribution of Cumberland encompasses much of the area be-
tween the Tennessee and Ohio Rivers (Fig. 1) (Anderson et al., 2010;
Justice, 1987). The conflation of typological names, such as with Barnes
in the Great Lakes region, may explain the identification of some
Cumberland-like bifaces across a larger territory (e.g., Bradley et al.,
2010; Justice, 1987;White, 2006). Notably, theMidsouth is also charac-
terized by an abundance of high-quality cherts (Amick, 1987; Parish,
2011, 2013). The majority of Cumberland bifaces are made from Fort
Payne and St. Louis cherts, which naturally occur in tabular and cobble
forms from northern Alabama to central Kentucky.

Data available in PIDBA and state surveys suggest that people using
Cumberland fluted bifaces had a predilection for major river valleys in
the Midsouth, similar to Clovis (Anderson, 2004; Anderson et al.,
2010; Barker and Broster, 1996; Breitburg and Broster, 1994; Broster
and Norton, 1996). Based on Clovis data, Miller (2011) suggests that
rather than sampling or population biases, the distribution of fluted bi-
faces in the Midsouth reflects a land-use strategy focused on the
Fig. 1. Generalized core distribution of Cumberlan
intersection of rivers, physiographic boundaries, and toolstone sources.
It is reasonable to assume that this pattern holds true for Cumberland as
well, given the similarities in technological organization between the
two types (Tune, 2016).

Though Cumberland bifaces are dispersed throughout theMidsouth,
relatively high densities have been documented in certain areas that
may represent habitual-use sites. These locations may be similar to ag-
gregation sites associated with Clovis macrobands (Anderson, 1990,
1996; Smallwood, 2012), and may reflect a post-Clovis continuation of
macroband aggregation behaviors. The Sandy Springs site, in southern
Ohio, is near the northern extent of Cumberland distribution and is lo-
cated in close proximity to a saline spring (Seeman et al., 1994;
Tankersley, 1994). At least 15 Cumberland bifaces have been docu-
mented from the site, which has limited evidence for on-site biface re-
duction and a high percentage of finished bifaces made from non-local
raw materials (Aagesen, 2006; Seeman and Prufer, 1982; Seeman
et al., 1994; Tankersley, 1989).

The Parris Collection andHeaven's Half Acremay represent habitual-
use sites near the southern extent of Cumberland distribution. The
Parris Collection primarily comes from multiple sites in Hardin County,
in south-central Tennessee (Tune et al., 2015). Extensive research by
noted avocational archaeologist Jim Parris identified a series offlutedbi-
face sites concentrated on remnant levees of the Tennessee River.
Heaven's Half Acre represents a series of fluted biface sites near the Ten-
nessee River in northern Alabama. Since the 1950s avocational archae-
ologists have recovered large numbers of Cumberland and other
fluted biface forms from the margins of geomorphic depressions that
may have been wet season ponds during the late Pleistocene (Futato,
1996; King, 2007). Both the Parris Collection and Heaven's Half Acre
d fluted bifaces and sites referenced in text.
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assemblages are characterized by impact damage and basal fragments
made on locally available raw materials, and likely reflect discard be-
haviors and possibly toolkit maintenance activities.

3. Chronological considerations

Buried and datable Paleoindian sites are notoriously rare in the
Midsouth (e.g., Miller and Gingerich, 2013), and at this time Cumber-
land bifaces have only been recovered from surface contexts and pa-
limpsest components containing multiple biface types. This situation
has prevented Cumberland from being directly dated. Technological
similarities to other well-dated, and presumably coeval, biface types in
adjacent regions, as well as stratigraphic associations in the Midsouth
support a post-Clovis chronology. Based on widely accepted technolog-
ical chronology, the emergence of instrument-assisted fluted technolo-
gies across the continent post-date Clovis and generally corresponds to
the earliest part of the YD (Anderson et al., 2010, 2015; Bradley et al.,
2008; Ellis and Deller, 1997; Fiedel, 1999; Goodyear, 1999, 2010;
Meltzer, 2009; Tankersley, 1990, 1996). Technologically similar Folsom
fluted bifaces have been securely dated throughout the Plains and
Southwest to 10,700–10,390 14C yr BP (12,680–12,260 cal yr BP)
(Frison and Stanford, 1982; Hill, 2001; Hill and Hofman, 1997;
Hofman, 1995; Meltzer, 2006), and correspond well with the expected
range of Cumberland in the Midsouth.

Assuming that Clovis immediately precedes instrument-assisted
fluting in the Midsouth, as it does in other regions, then it is possible
to establish a maximum age for Cumberland, which may also be con-
temporaneous with other regional fluted technologies such as
Redstone. Relying on charcoal-based radiocarbon ages, the age of Clovis
in the greater Southeast matches that of other regions, and ranges from
10,980 ± 75 to 10,915 ± 30 14C yr BP (12,860 ± 90 to 12,760 ±
30 cal yr BP) (Brose, 1994; Goodyear, 2013; McAvoy and McAvoy,
1997; Waters et al., 2009). Therefore, Cumberland is assumed to occur
after ca. 12,800 cal yr BP.

Cumberland bifaces (as well as Quad, Beaver Lake, and Dalton)were
recovered from the lowest cultural deposits of Dust Cave, northern
Alabama (Driskell, 1994, 1996; Sherwood et al., 2004). A heavily
reworked Cumberland biface and a Cumberland-like distal biface frag-
ment were recovered from the basal components (Driskell, 1994,
1996; Hollenbach andWalker, 2010; Sherwood et al., 2004). The precise
stratigraphic sequence of the Paleoindian bifaces at Dust Cave is unclear,
as multiple types co-occur within the same deposits. Dalton, however,
generally occurs above other Paleoindian forms (Driskell et al., 2012;
Sherwood et al., 2004), and thus, may provide aminimum age for Cum-
berland. Eight radiocarbon ages on dispersed charcoal in the lowest
Quad/Beaver Lake/Dalton component (Zone U) range from 10,500 ±
60 to 10,310 ± 60 14C yr BP (12,430 ± 120 to 12,140 ± 140 cal yr BP)
(Sherwood et al., 2004). As such, ca. 12,100 cal yr BP may represent a
minimum age for Cumberland.

The Phil Stratton site, in Kentucky, has been presented as an intact
Cumberland site dating older than 14,000 cal yr BP (Gramly, 2008,
2009, 2012, 2013, 2015). However, reanalysis of the existing assem-
blage and new excavations have documented significant contextual
problems with the assemblage and proposed dates (Tune and Melton,
2013). Of the 42 identifiable bifaces, only six are Cumberland. The re-
maining 36 are Archaic, Woodland, and Mississippian. Based on the di-
agnostic biface assemblage, the Phil Stratton site does not represent a
pure Cumberland site. Rather, the site appears to have been extensively
re-occupied beginning in the late Pleistocene and continuing through-
out the entire Holocene.

In 2013 I directed an excavation of the site to study the stratigraphy
and potentially recover additional artifacts. The 2013 excavation units
were placed immediately adjacent to the previous excavation blocks
to correlate the geologic profiles and evaluate previous interpretations
of the site (Fig. 2). Two units were specifically placed adjacent to a “wit-
ness section that was set aside for future investigators” (Gramly,
2013:143). The 2013 excavation documented shallow, deflated deposits
that are extensively disturbed by tree roots, bioturbation, and agricul-
tural processes.

Two geologic units were recorded in 2013 at the southern-most
edge of the site where deposition is greatest (Fig. 3). The upper Unit 2
(0–25 cm) is a brown (10YR 4/4) silty clay loamwith subangular blocky
structure, few small roots, abundant iron manganese accumulations,
and an abrupt wavy boundary. Unit 2 is composed of eolian sediments
redeposited from the erosion of the upper hill slope. The lower Unit 1
(25+ cm) is an oxidized brown clay loam (7.5YR 4/6) with few iron
manganese accumulations, common bioturbation features, and an
abrupt (erosional), wavy boundary. Unit 1 represents a clay residuum
formed from theweathering of the limestone bedrock and is commonly
exposed throughout the surrounding area due to erosion by intensive
agricultural practices. In some areas of the site Unit 2 is covered by up
to 25 cm of recently redeposited fill consisting of a mixture of both
Units 1 and 2. Artifacts are deposited throughout Unit 2, and occasion-
ally intrude into Unit 1 through root molds and animal burrows. Arti-
facts are also present in the redeposited overburden.

Gramly (2012) contends the Cumberland occupation at the Phil
Stratton site predates 14,000 cal yr BP based on a series of optically stim-
ulated luminescence (OSL) dates. A critical reviewof the published liter-
ature, however, clearly indicates that such early dates do not correlate
with the artifact-bearing deposits. As such, a calibration curve was con-
structed to correlate the OSL ages with the artifact-bearing deposit
(Gramly, 2013, 2015). The OSL calibration curve is based on two unsup-
ported assumptions. First, the modern ground surface at the Phil
Stratton site is assumed to be equivalent in age to the end of Peoria
Loess deposition, which according to Gramly (2013, 2015) occurred at
12,800 cal yr BP. Peoria Loess deposition has beenwell-studied through-
out the Central Plains andMidwest and its terminus is dated to 16,000–
12,000 cal yr BP (Bettis et al., 2003; Johnson andWilley, 2000; May and
Holen, 2003; Muhs et al., 1999, 2001, 2008). Second, such a calibration
also assumes a constant rate of deposition has occurred without any
erosional episodes. However, the Phil Stratton site is located on a highly
eroded landform that has been subjected to intense agricultural
plowing since the early nineteenth century (Phil Stratton personal com-
munication).Moreover, amajor unconformity representing another ep-
isode of erosion is clearly visible at the contact of geologic Units 1 and 2
(Fig. 4). Thus, the variable rate of deposition and erosion, as well as the
unsupported age of the ground surface refute any interpretations drawn
from the OSL calibration curve for the Phil Stratton site.

Furthermore, the OSL ages likely represent pedogenesis rather than
the timing of deposition because pedogenic processesmix grains of var-
ious ages (Bateman et al., 2007a, 2007b). Pedogenesis is known to com-
promise the results of OSL dating, specifically in upland geomorphic
settings with thick, weathered argillic horizons (Ahr et al., 2013), such
as at Phil Stratton. Ahr and colleagues studied the effects of pedogenesis
in sandy sediments of upland sites in Texas and found that “pedogenic
mixing of particles of various apparent ages, and… changes in environ-
mental dose rate due to weathering” skewed the ages of those samples
(Ahr et al., 2013:221). As a result, the OSL ages represent “apparent age
estimates rather than true depositional ages” (Ahr et al., 2013:14). Be-
cause Phil Stratton is in a similar geomorphic setting, and similar pedo-
genic processes have affected the sediments, the OSL ages there also
likely reflect pedogenesis rather than deposition. Thus, at this time the
OSL ages from Phil Stratton do not provide an accurate age of Cumber-
land occupation.

4. Materials and methods

To identify and interpret variability in Cumberland technology, over
900 Cumberland fluted bifaces were examined. While it is very likely
that fluted and unfluted Cumberland bifaceswere part of the same tech-
nological system, the lack of context and typological similarities to other
late Pleistocene biface forms (e.g., Beaver Lake), preclude the analysis



Fig. 2. Phil Stratton site excavation blocks and distribution of identifiable bifaces.
Adapted from Gramly (2013).
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of unfluted specimens in this study. In timefluted andunfluted Cumber-
land bifacesmay be recognized as part of the same technological system
that also includes Beaver Lake, similar to Folsom and Midland bifaces
(Amick, 1995; Hofman, 1992; Jennings, 2012; Meltzer, 2006). Primary
data collected from collections throughout the Tennessee and Ohio
River Watersheds, as well as data from PIDBA, were analyzed to study
quantitative and qualitative attributes of Cumberland biface
Fig. 3. Generalized profile of the Phil Stratton site with the relative depths of OSL ages
reported by Gramly (2013) correlated with the stratigraphic profile documented in the
2013 excavation.
morphology (Table 1). The PIDBA data were previously collected by re-
gional Paleoindian specialists. In turn, the combined datasets were used
to study technological elements related to artifact life histories.
Assessing biface production, use, reuse, and discard, facilitates interpre-
tations of technological organization and may help explain variability
(Andrefsky, 2010). Finally, inferences about settlement strategies were
made based on the organization of technological elements.

While intact and dateable late Pleistocene archaeological sites are
rare in the Midsouth, exceptional fluted biface survey data has been
compiled (Anderson, 2004; Anderson et al., 2010; Goodyear, 1999;
Miller and Gingerich, 2013). Potential biases and limitations are
known for PIDBA datasets and include incomplete data, sample incon-
sistency, site formation processes, and ground cover (see Anderson
et al., 2010 and Prasciunas, 2011 for a detailed discussion of potential
biases). Given these limitations, PIDBA datasets are still widely accepted
to model regional human behaviors (Anderson and Gillam, 2000;
Anderson et al., 2011; Lanata et al., 2008; Meeks and Anderson, 2012;
Miller, 2011; Shott, 2013; Smallwood, 2012; Smallwood et al., 2015).

Due largely to their relative scarcity, Cumberland bifaces are known
by artifact collectors and PIDBA data contributors as one of the more
commonly reproduced biface types. Unfortunately, there is often no
easy way of determining modern reproductions from archaeological
specimens when they are part of a larger collection (whether public or
private). This reality, as well as the broader issues of working with
Fig. 4. Stratigraphy documented during the 2013 excavation. East wall of Unit S21/E17
showing abrupt boundary between geologic Units 1 and 2.



Table 1
Collections included in analyses.

Collection Number of specimens Curation location Collection provenience

Discovery Park of America 9 Union City, Tennessee Tennessee
Guerri Collection 15 Terre Haute, Indiana Tennessee, Alabama, Kentucky, Ohio
King Collection 88 Cullman, Alabama Alabama
Parris Collection 39 Savannah, Tennessee Tennessee
Indian Mound Museum 12 Florence, Alabama Alabama
Tennessee Division of Archaeology 13 Pinson, Tennessee Tennessee
Smithsonian National Museum of Natural History 21 Washington DC Tennessee, Alabama, Kentucky
Stratton Collection 9 Adairville, Kentucky Kentucky
Tennessee State Museum 9 Nashville, Tennessee Tennessee
PIDBA, Tennessee 314 Tennessee
PIDBA, Alabama 377 Alabama
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private collections, has been the subject of much debate and recently
highlighted in the discussion “Pros and Cons of Consulting Collectors”
in the SAA Archaeological Record, Volume 15, No. 5. Throughout the re-
search presented here, every effort wasmade to eliminate artifacts with
questionable provenience. Furthermore, in situations where I thought
the inclusion of an artifact into this research would directly contribute
to its monetary value, I removed it from my datasets.
4.1. Methods for characterizing morphology

Assessing biface morphology is a productive way to identify and
document the range of variability within biface technologies. The mor-
phological study presented here is based on primarily analysis of 216
finished Cumberland fluted bifaces (Table 2). An additional 691 finished
Cumberland bifaces record by other researchers and documented in
PIDBA were also included in this study. All maximum measurements
and morphological ratios used in this study are documented only on
complete specimens. Basal width, waist width, depth of basal concavity,
and depth of basal concavity-to-basal width are documented from basal
fragments and complete specimens.

I characterize Cumberland bifacemorphology using a standard set of
metric variables and morphological ratios (Eren et al., 2011; Jennings,
2013; Morrow and Morrow, 1999; Smallwood, 2012; Thulman, 2006).
For each finished biface, I recorded the maximum length, maximum
width, maximum thickness, basal width, waist width, face-angle, flute
length and width (when possible), inner flute thickness, depth of
basal concavity, weight, presence/absence edge grinding, and blank
form (when possible). I calculated morphological ratios such as
length-to-width, width-to-thickness, depth of basal concavity-to-basal
width, and lateral indentation index (LII) for each biface. Presumably
the most standardized attributes reflect the elements most critical to
the overall technological system. As such, I calculated a coefficient of
variation (CV) for all attributes as a way to measure relative standardi-
zation (Eerkens and Bettinger, 2001). Coefficient of variation provides a
statistical technique to assess standardization between samples by
comparing standard deviation to the mean (Eerkens and Bettinger,
2001). The smaller a CV value is, the more standardized the sample is.
Table 2
Cumberland bifaces included in analyses.

Condition Collections PIDBA Total

Tennessee Alabama

Complete 85 206 104 395
Base 76 59 155 290
Midsection/distal 27 28 108 163
Fragments 0 16 6 22
Preforms 28 5 4 37
Total 216 314 377 907
4.2. Methods for studying technological organization

To understand howCumberland bifacesweremade, used, reworked,
and discarded I recorded flaking pattern, basal grinding, thermal alter-
ation, fluting elements, and post-fluting reduction, as well as patterns
in fracture types, reworking, and abandonment. These attributes reflect
elements of provisioning strategies as they are related to organization
(Pitblado, 2003).

While patterns in the nature and frequency of fracture types poten-
tially reflect functional behaviors, patterns of reworking and repair also
reflect provisioning strategies; thus, I documented type and frequency
of reworking. I calculated technological ratios such as average grinding
length-to-maximum length and average flute length-to-maximum
length for complete bifaces. I documented the apparent reason for aban-
donment to understand why and when Cumberland bifaces were
deemed no longer useful.
4.3. Methods for interpreting settlement strategies

While the interpretation of Cumberland settlement strategies pre-
sented here is framed in terms of provisioning strategies – provisioning
places versus provisioning individuals – it is important to emphasize that
this is not a dichotomy, but rather represents a continual range of vari-
ation (Kuhn, 1990). Furthermore, it should be noted that provisioning
strategies are not static, but are flexible enough to be altered to meet
seasonal or fluctuating demographic needs (Binford, 1980). This is par-
ticularly relevant when one considers the evidence that late Pleistocene
populations in the Southeast were likely regularly aggregating in
macroband groups (Smallwood, 2012). Though Smallwood (2012) fo-
cuses specifically on Clovis settlement patterns, it is likely that Cumber-
land settlement patterns were similar, especially given the similarities
in technological organization between the two technologies (Tune,
2016). Furthermore, large Cumberland assemblages from sites such as
Sandy Springs (Aagesen, 2006; Seeman and Prufer, 1982; Seeman
et al., 1994; Tankersley, 1989), and collections such as the Parris Collec-
tion (Tune et al., 2015) and Heaven's Half Acre (King, 2007) may pro-
vide evidence of potential Cumberland aggregation behaviors similar
to Clovis.

Residentially organized strategies aremarked by frequentmoves be-
tween short-term residential camps with continual transport of tools in
environmentswhere resource distribution is unknownor unpredictable
(Kuhn, 1992). To ensure tools are availablewhen they are needed, tech-
nology is structured around the concept of provisioning individuals
with “personal gear” (Binford, 1979). As such, bifaces are expected to
be used to the point of exhaustion and exhibit extensive rejuvenation
when they are discarded, which results in a high ratio of complete to
broken bifaces (Table 3, Pitblado, 2003). Conversely, a logistically orga-
nized strategy is structured around the provisioning of specific places on
the landscape. Environments where resource distribution is known or
predictable, and future needs can be expected, favors a logistically



Table 4
Morphological characteristics of Cumberland bifaces.

Average Maximum Minimum CV

Maximum width 23.83 52.17 10.00 0.17
Basal width 20.95 35.61 10.00 0.18
Maximum length 75.07 167.88 24.91 0.33
Waist width 20.78 40.50 13.97 0.22
Waist width:basal width 0.85 1.23 0.00 0.24
Waist width:maximum width 0.74 1.14 0.00 0.31
Length:width 3.14 6.02 1.12 0.26
Depth of basal concavity 3.17 11.02 0.00 0.51
Depth of basal concavity:basal width 0.15 1.33 0.00 0.67
Maximum thickness 7.58 19.00 2.82 0.21
Width:thickness 3.23 7.40 1.16 0.22
Lateral indentation index 0.07 0.10 0.02 0.26
Inter flute thickness 5.43 8.16 3.45 0.18
Face-angle 92.60 101.35 82.05 0.04
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organized strategy (Kuhn, 1992). As bifacial tools become dull or break,
they are replaced rather than reworked resulting in a relatively low
complete-to-broken biface ratio (Pitblado, 2003).

5. Characterizing Cumberland

5.1. Cumberland biface morphology

Cumberland bifaces exhibit standardized basal elements and greater
variation in length. The least variable attributes of Cumberland biface
morphology are maximum width (23.83 mm), basal width
(20.95 mm), and inter flute thickness (5.43 mm) with CVs less than
20% (%) (Table 4). Maximum thickness (7.58 mm), and waist width
(19.85 mm) are the next most standardized attributes, with CVs less
than 25%. The average maximum length is 75.07 mm, with a CV of
33%. The average basal concavity depth is 3.17 mm with a CV of 51%,
while the ratio of basal concavity depth-to-basal width has a CV of 67%.

Based on morphological ratios, Cumberland bifaces are over three
times longer than they are wide; likewise, width-to-thickness is ap-
proximately 3.25:1.Waist width-to-basalwidth and the lateral indenta-
tion index (LII) both have a CV less that 30%. Waist width-to-maximum
width has a CV of 31%. Thesemorphological ratios reflect the character-
istically “waisted” shape of Cumberland bifaces, and further reflect stan-
dardization in hafting methods.

Face-angle was recorded for 80 complete and finished specimens.
Face-angle quantifies the expansion of the lateral edges of bifaces by
measuring the angle of the lateral edges to the base (Roosa and Ellis,
2000). Essentially this measurement further quantifies the relationship
between basal and maximum width. Therefore, laterally reworked bi-
faces should be more variable, while distally reworked bifaces should
be more standardized. The average face-angle of Cumberland bifaces
is 92.60 degrees, and is the least variable attribute (CV= 4%). The over-
all morphological characteristics indicate that Cumberland bifaces were
primarily reworked from the distal end. This characteristic is similar to
other Paleoindian point types such as Folsom, which typically exhibit
little resharpening of the lateral margins and are reworked from the
tip (Ahler and Geib, 2000).

5.2. Cumberland biface technology

This study focuses on technological attributes that are related to
basal treatment and flaking techniques. Cumberland bifaces, on aver-
age, are ground to 25.47 mm from the base, or 35% of the total length
(Table 5). The average flute length is 46.32 mm, or 60% of the total
length. The average flutewidth is 11.49mm. Average flute length, how-
ever, is considerably variable (CV = 45%), while flute widths are more
standardized (CV = 29%). The variation documented in flute dimen-
sions further suggests that Cumberland bifaces were distally reworked,
with only minor modification to the lateral edges after completion.
Basal beveling occurs in 49% of Cumberland bifaces examined, while
51% are not beveled. This characteristic is likely related to basal prepara-
tion prior to fluting, which has also been previously noted on Clovis bi-
faces (Broster et al., 2013; Collins, 1990;Waters et al., 2011;Waters and
Jennings, 2015).

Collateral flaking is the dominant flaking pattern (81%) documented
on complete, finished specimens. This is an important aspect of
Table 3
Expected characteristics of provisioning strategies.

Provisioning individuals Provisioning place

Mobility Residentially Logistically
Intensity of use Intensive Non-intensive
Rejuvenation High Low
Reason for discard Exhausted Broken
Complete:broken High Low
Cumberland technology due to the creation of a midline ridge typically
running the length of the biface. Interestingly, 5% of Cumberlands stud-
ied exhibit occasionally overface flaking similar to Clovis bifaces. These
overface flake scars are likely remnants of percussion flaking during ini-
tial bifacial reduction. Overface flaking does not appear to be an inten-
tional reduction method for the production of Cumberland bifaces.

Thermal alteration, identified by the presence of potlid fractures, oc-
curs in low frequency (11%) andwas likely not related to the production
process. Thermal alteration is only identified on biface fragments. Many
of the potlid fractures are located along the margins of transverse
breaks, suggesting that heating occurred after they were discarded.
Other specimens, such as one of the bifaces from the Phil Stratton site,
explosively fractured intomultiple fragments that have been refitted in-
dicating thermal alteration occurred at the time, or after, the biface was
discarded.

5.3. Cumberland biface reduction sequence

Of the complete Cumberland bifaces available for analysis, 93% (n=
79) exhibited a biconvex transverse cross section. The remaining 7%
(n = 6) were plano-convex in cross section. This pattern appears to
be related to initial blank form used for the production of bifaces. The
overwhelming majority (89%; n = 76) of complete bifaces were made
from bifacial blanks. Just 11% (n= 9) of the complete bifaces, including
all plano-convex specimens, weremade on flakes. Bifacesmade on flake
blanks were identified based on the remnants of the original ventral
face of the flake or pronounced longitudinal curvature.

Preformswere initially shaped into a rowboat formwith convex lat-
eral edges and a straight to convex base. Initial reduction and shaping
was completed with large, random percussion flake removals (Fig. 5A,
B). The convex lateral edges typically exhibit little or no waisting.
Early in the reduction sequence flaking may extend across the midline,
similar to Clovis overface flaking (Fig. 5B); however, this is rarely pres-
ent on finished Cumberland bifaces. Once the general shape is obtained,
one face is selected for fluting. Typically, each face was prepared and
fluted individually. This likely represents a risk management strategy
tominimize time and energy in case thefirst fluting attempt catastroph-
ically broke the preform (Flenniken, 1978). This was also recognized by
Jolly (1972), and is exemplified in the example illustrated by Boldurian
Table 5
Technological characteristics of Cumberland bifaces.

Average Maximum Minimum CV

Average grind length 25.47 69.85 0.00 0.44
Average grind length:maximum length 0.35 0.80 0.00 0.39
Average flute length 46.32 118.61 7.00 0.45
Average flute length:maximum length 0.60 1.00 0.00 0.41
Average flute width 11.49 27.58 4.00 0.29
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andMcKeel (2011:110, Fig. 4). The practice of preparing and fluting one
face at a time has also been documented in Folsom technology, and
interpreted as a cost minimizing strategy (Flenniken, 1978). Systematic
collateral pressure flakes were removed to create a distinct midline
ridge. The ridge serves to guide the removal of the channel flake and en-
sure that it travels the desired distance. Other researchers have noted
the importance of the midline ridge and suggest that it is the most
distinguishing feature of Cumberland preforms (Cambron and Hulse,
1961; Jolly, 1972). Immediately prior to fluting, the base is beveled
and a prominent striking platform is created. Similar to Folsom (Sellet,
2004), the distal ends of some Cumberland preforms are blunted sug-
gesting the use of an anvil or brace during fluting. If the removal of
the first flute is successful, then the second face is prepared for fluting
following the same process. It should be noted that on approximately
20% of bifaces examined only one face is fluted. Once the channel flakes
have been successfully removed, another episode of lateral pressure
flaking is done to shape the final form (Fig. 5C). During this final step
the distinctive waisted shape is created through intensive lateral pres-
sure flaking, that also reduces and standardizes the flute width.
Fig. 5. Examples of Cumberland preforms and a finished biface. A, Smithsonian National Museu
and C, Parris Collection, Hardin County, Tennessee.
The sample of preforms available for study is inherently fragmented
because only broken preforms would have typically been discarded
prior to completion. The sample of 52 preforms analyzed consists of
41 basal fragments, 9 nearly complete specimens, 1 midsection, and 1
distal tip fragment. Themost common reason for abandonmentwas cat-
astrophic breaks caused by plunging channel flakes. Because the pre-
forms were discarded at various points in the reduction sequence,
most measurements exhibit a high rate of variation. However, certain
morphological characteristics may be distinguishing features of Cum-
berland preforms (Table 6). The ratio of basal width-to-maximum
width is 3:4 with a relatively low CV of 19%.

5.4. Patterns in Cumberland breakage and rejuvenation

Just over half (54%) of all finished Cumberland bifaces analyzed are
fractured in some way. The majority of these (n = 290, 61%) are basal
fragments, while distal tips, midsections, and miscellaneous fragments
account for the remaining 39%. On specimens where data were avail-
able, 25% of bifaces were missing at least one ear, excluding recently
m of Natural History, Tennessee; B, Pinson State Archaeological Park (TDOA), Tennessee;
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broken specimens, which may be related to shock damage during im-
pact. Thirteen percent exhibit impact damage to the tip based on the
presence of “reverse flute scars,” burination to the distal lateral edge,
or crushing. The majority (70%) of Cumberland basal fragments were
transversely broken. Heating accounts for almost 10% of the fractures.

Of the complete, finished Cumberland bifaces analyzed, 28% exhib-
ited some type of rejuvenation (Fig. 6). This does not include bifaces
reworked into other tool types. Of reworked specimens, 18% retained
evidence of impact damage near the distal tip, suggesting that Cumber-
land bifaces were typically rejuvenated back into their original function
(Fig. 6B).
Fig. 6. Cumberland bifaces in various stages of rejuvenation. A, Smithsonian National
Museum of Natural History, Alabama; B, Trinity site, Lewis County, Kentucky; C, Parris
Collection, Hardin County, Tennessee.
6. Cumberland technological organization and behavioral
inferences

6.1. The Cumberland technological system

The two attributes most directly related to hafting are fluting and
lateral grinding. Surprisingly, flute length (CV = 45%) and the lateral
grinding length (CV = 45%) are two of the most variable attributes of
Cumberland bifaces. Thus, the length of flutes and grinding initially do
not appear be significant to function. However, if the technological ra-
tios of flute length-to-maximum length and length of grinding-to-
maximum length are considered, then these two attributes become
more informative. The proportions of these measures are more stan-
dardized than the specific lengths of the individual attributes. Further-
more, the technological ratios of flute length-to-maximum length and
lateral grinding length-to-maximum length remain constant even
after rejuvenation. Morphological ratios such as maximum length-to-
width change significantly as bifaces are reduced (Kuhn and Miller,
2015). Thus, it appears that technological ratios are informative and
may reflect aspects of hafting and artifact use-lives. Cumberland bifaces
have a relatively small width-to-thickness ratio compared to other late
Pleistocene fluted bifaces (see Bever and Meltzer, 2007; Smallwood,
2012), resulting in a more robust morphology.

Themajority (80%) of complete Cumberland bifaces are over 55mm
long, while the majority (82%) of Cumberland basal fragments are less
than 60 mm long. As such, it appears that the minimum threshold re-
lated to discard is approximately 55–60 mm. Bifaces above that range
are expected to be resharpened, if possible, while below that length
they are expected to be discarded (Fig. 7). Catastrophic transverse frac-
tures typically occur below 55 mm. Based on technological ratios and
assuming that lateral grinding reflects hafting, there is only a slight cor-
relation between hafting and maximum length (r = 0.54, r2 = 0.30),
suggesting that longer bifaces did not necessarily have longer hafts.
Using the ratio of grinding length-to-maximum length, functional
blade length can be inferred. The typical Cumberland biface was hafted
35% of its total length, with the remaining 65% serving as the functional
blade. If the threshold for complete Cumberland biface length is 55–
60 mm, then the minimum functional blade length is calculated to
37.75–39.00 mm. Once this threshold was reached, either because of
breakage or exhaustion, the biface was likely replaced.
Table 6
Morphological characteristics of Cumberland preforms.

Average Maximum Minimum CV

Maximum width 35.15 57.29 26.29 0.21
Basal width 25.85 35.61 17.59 0.18
Waist width 28.10 37.60 20.28 0.22
Maximum thickness 8.14 11.14 4.89 0.18
Waist width:basal width 0.83 0.99 0.64 0.13
Depth of basal concavity 2.71 6.47 0.60 0.73
Depth of basal concavity:basal width 0.09 0.18 0.03 0.61
Inter flute thickness 5.09 6.91 3.79 0.21
Average flute width 17.92 28.82 11.97 0.26
6.2. Biface morphology

Based on CVs for maximum dimensions and morphological ratios,
the most standardized attributes of Cumberland bifaces are related to
the basal element. This is not unexpected given that the haft element
is subject tomorphological constraints imposed by specific hafting tech-
niques (Judge, 1970; Keeley, 1982; Roosa, 1977). While lateral and
Fig. 7. Frequencies in the lengths of complete Cumberland bifaces and basal fragments.
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distal resharpening of the blade element changes the overall morphol-
ogy, the hafted basal element is less frequently modified (Bever and
Meltzer, 2007; Meltzer and Bever, 1995).

In spite of overall basal morphology being generally standardized,
basal concavity is highly variable. This pattern of variability in basal con-
cavity may be related to several factors including being tailored to indi-
vidual foreshafts, stylistic elements of haft construction, and rebasing of
broken bifaces (Ellis, 2004; Smallwood, 2012; Taylor-Montoya, 2007;
White, 2013). Daniel and Goodyear (2006) and Goodyear (2006) sug-
gest that increased basal concavity is related to a technological shift
marking the cultural transition from the early tomiddle Paleoindian pe-
riods. While this pattern may hold true in the Clovis-to-Redstone tran-
sition in the Coastal Plain, it does not appear to be the case with
Clovis-to-Cumberland in the Midsouth. Based on Smallwood's (2012)
comprehensive study of regional Clovis morphology, Cumberland bi-
faces have slightly less basal concavity than Clovis bifaces.

6.3. Breakage patterns and rejuvenation

Cumberland bifaces appear to have been primarily resharpened
from the distal tip. Distal resharpening is reflected in the standardiza-
tion of face-angle andwidth dimensions, and the variability in length di-
mensions. Similar patterns of rejuvenation have also been noted on
other post-Clovis fluted biface types such as Barnes and Folsom
(e.g., Ahler and Geib, 2000; Deller and Ellis, 1992; Ellis, 2004; Judge,
1973). While biface morphology may be influenced by factors related
to raw material, this does not appear to be the case in the Midsouth.
The ubiquity of toolstone throughout much of the Midsouth (Amick,
1987; Parish, 2011, 2013), reduces potentially limiting factors caused
by availability, quality, or general package size of local toolstone
(Kuhn, 1995).

Patterns of rejuvenation documented in Cumberland bifaces indi-
cate that they were designed to be maintainable tools. The relatively
constant widths of the bifaces, as well as the flutes, indicate that mini-
mal resharpening occurred along the lateral margins after the biface
was completed. The standardization of basal elements suggests that re-
juvenating broken or dulled bifaces typically occurredwith the biface in
the haft. This suggests that Cumberland bifaces were not multifunc-
tional tools, but rather were designed almost exclusively for piercing,
as may be the case for other post-Clovis fluted biface types.

6.4. The organization of technology and settlement organization

The ubiquity of toolstone in the Midsouth neutralizes potential ef-
fects of resource availability, so that patterns in biface technologies
more likely reflect organization strategies rather than differential access
to raw materials (Kuhn, 1995). The patterns evident in overall biface
morphology, hafting, breakage, rejuvenation, anddiscard, reflect a logis-
tically mobile settlement strategy based around the provisioning of
places. As such, Cumberland bifaces were likely specialized piercing
tools used by task groups on hunting forays. Similar to Folsom, Cumber-
land groups likely made and maintained bifaces as part of a gearing-up
strategy during periods of downtime (Sellet, 2004, 2013). The low ratio
of complete to broken Cumberland bifaces indicates that transverse
breaks were catastrophic. Although, making minor repairs to impact
damaged bifaces could extend use-life. It is likely, however, that this is
only part of a larger, more complex, landuse strategy that incorporated
flexible provisioning strategies related to seasonal resource structure
and demographic fluctuations associated with aggregation events.

7. Conclusion

Cumberland biface technology is prevalent throughout the
Midsouth, specifically the Highland Rim of southern Kentucky, central
Tennessee, and northern Alabama. Unlike other late Pleistocene tech-
nologies, Cumberland bifaces have never been recovered from intact,
single component contexts associated with datable materials. The co-
occurrence of Cumberland and other Paleoindian biface types in the
same layer at sites such as Dust Cave is enigmatic. Additional sites
with intact stratigraphymust be excavated to understand the intricacies
of Paleoindian chronology in the Midsouth United States. Currently,
there is a lack of tools and debitage, subsistence data, and radiometri-
cally supported chronologies associated with Cumberland technology.

While Cumberland data is primarily limited to bifaces lacking con-
text, analyses of over 900 bifaces indicate that Cumberland technology
was designed as part of a logistical settlement strategy used by people
mapping on to specific places on the landscape. The ubiquity of lithic
rawmaterials and largely predictable distributions of resources allowed
people usingCumberland technology to logisticallymap onto thewood-
land landscape of the Midsouth. Based on bracketing radiocarbon ages
and technological similarities to other, well-dated biface technologies,
Cumberland appears to be a post-Clovis manifestation contemporary
to the earliest part of the YD (ca. 12,800–12,100 cal yr BP). However,
more research is needed to further support this assertion. The hypothe-
ses presented here should be further tested with additional technologi-
cal studies of Cumberland sites with preservation of more complete
toolkits and debitage.
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